TEORIAS E FILOSOFIAS DE GRACELI 193
- Gerar link
- X
- Outros aplicativos
Primeiro princípio da mecãnica quãntica no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIM. FENOM.
sexta-feira, 19 de julho de 2019
- Primeiro princípio: Princípio da superposição
Na mecânica quântica, o estado de um sistema físico é definido pelo conjunto de todas as informações que podem ser extraídas desse sistema ao se efetuar alguma medida.
Na mecânica quântica, todos os estados são representados por vetores em um espaço vetorial complexo: o Espaço de Hilbert H. Assim, cada vetor no espaço H representa um estado que poderia ser ocupado pelo sistema. Portanto, dados dois estados quaisquer, a soma algébrica (superposição) deles também é um estado.
Como a norma dos vetores de estado não possui significado físico, todos os vetores de estado são preferencialmente normalizados. Na notação de Dirac, os vetores de estado são chamados "Kets" e são representados como aparece a seguir:
Usualmente, na matemática, são chamados funcionais todas as funções lineares que associam vetores de um espaço vetorial qualquer a um escalar. É sabido que os funcionais dos vetores de um espaço também formam um espaço, que é chamado espaço dual. Na notação de Dirac, os funcionais - elementos do Espaço Dual - são chamados "Bras" e são representados como aparece a seguir:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- Segundo princípio: Medida de grandezas físicas
- a) Para toda grandeza física A é associado um operador linear autoadjunto  pertencente a A:  é o observável (autovalor do operador) representando a grandeza A.
- b) Seja
o estado no qual o sistema se encontra no momento onde efetuamos a medida de A. Qualquer que seja
os únicos resultados possíveis são os autovalores de
do observável Â.
- c) Sendo
o projetor sobre o subespaço associado ao valor próprio
a probabilidade de encontrar o valor
em uma medida de A é:
onde
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- d) Imediatamente após uma medida de A, que resultou no valor
o novo estado
do sistema é
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- Terceiro princípio: Evolução do sistema
Seja
o estado de um sistema ao instante t. Se o sistema não é submetido a nenhuma observação, sua evolução, ao longo do tempo, é regida pela equação de Schrödinger:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
é o hamiltoniano do sistema.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.
COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.
OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DULA ONDAS-PARTÍCILAS.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
/
GENERALIDADES ESPECÍFICAS / PARTÍCULAS..
ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.
PRINCÍPIO GRACELI DA INTERPOSIÇÃO
quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta relação].
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.
FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].
É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
- X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG DXΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli.xsistema de transições de estados, e estados de Graceli,xT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.
O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.
Com isto pode-se dividir a física em quatro grandes fases:
a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.
teoria da relatividade categorial Graceli
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
matriz categorial Graceli.

,
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.
COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.
OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DULA ONDAS-PARTÍCILAS.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
/
GENERALIDADES ESPECÍFICAS / PARTÍCULAS..
ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico, estados de fenômenos, estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado, vejamos alguns:
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Lei de Faraday-Neumann-Lenz
quinta-feira, 25 de julho de 2019
A lei de Faraday-Neumann-Lenz[nota 1], ou lei da indução de Faraday, ou simplesmente, lei da indução eletromagnética, é uma das equações básicas do eletromagnetismo. Ela prevê como um campo magnético interage com um circuito elétrico para produzir uma força eletromotriz — um fenômeno chamado de indução eletromagnética. É a base do funcionamento de transformadores, alternadores, dínamos, indutores, e muitos tipos de motores elétricos, geradores e solenoides.[1][2]
Atribui-se a Michael Faraday a descoberta da indução eletromagnética e, por conseguinte, o nome da lei relativa a esse fenômeno. Este foi comprovado experimentalmente por Faraday diversas vezes, apesar de sua explicação limitar-se ao conceito de linhas de força. A primeira formulação matemática da lei de Faraday foi feita por Franz Ernst Neumann em 1845. Nela, a força eletromotriz produzida em um circuito, pela indução, era expressa pelo negativo da derivada do fluxo magnético com o tempo através da área delimitada por esse circuito. O sinal negativo diz respeito ao sentido da FEM – e, por conseguinte, da corrente elétrica – e pode ser expressa formalmente por meio da chamada Lei de Lenz, desenvolvida por Heinrich Lenz em 1834, que integra o corolário da lei de Faraday.
Suas aplicações são inúmeras; na prática, quase todos os equipamentos eletro-eletrônicos utilizam o fenômeno da indução, seja para produzir uma corrente contínua, como nos dínamos, ou uma corrente alternada, como nos geradores, transformadores, alternadores e indutores, todos por meio da variação no campo magnético.
A equação de Maxwell–Faraday é uma generalização da lei de Faraday, e compõe uma das equações de Maxwell. Ela descreve como a variação de um campo magnético no tempo através de um circuito em repouso produz um campo elétrico não-eletrostático que, por sua vez, produz uma corrente elétrica no circuito. O movimento relativo entre um imã e o condutor e a produção, ou não, de um campo elétrico nessa experiência levaram a uma aparente dicotomia, exercendo, por sua vez, papel fundamental no desenvolvimento da relatividade restrita por Albert Einstein em 1905.
História[editar | editar código-fonte]
Retrato de Michael Faraday de 1842.
A indução eletromagnética foi descoberta de forma independente por Michael Faraday em 1831 e Joseph Henry em 1832.[3] Faraday, no entanto, foi o primeiro a publicar os resultados de seus experimentos.[4] Em 29 de agosto de 1831, data da primeira demonstração experimental da indução eletromagnética feita por Faraday,[5] ele amarrou dois fios em lados opostos de um anel de ferro (ou toro, um arranjo similar a um transformador toroidal moderno). Face às recém-descobertas propriedades do eletromagnetismo, ele esperava que, quando a corrente começasse a passar em um fio, uma espécie de onda viajaria através do anel e causaria algum efeito elétrico no lado oposto. Conectou, então, um dos fios a um galvanômetro e o outro a uma bateria. Foi observada, de fato, uma corrente transiente – que ele chamou de "onda de eletricidade" – nos momentos em que conectou e desconectou o fio à bateria.[6] Esta indução ocorreu devido à mudança que houve no fluxo magnético quando a bateria foi conectada e desconectada.[7]
Faraday explicou a indução eletromagnética usando um conceito que chamou de linhas de força. No entanto, grande parte dos cientistas da época rejeitavam suas ideias teóricas, principalmente porque não havia uma formulação matemática para elas.[8] James Clerk Maxwell, contudo, usou as ideias de Faraday como a base para sua teoria eletromagnética quantitativa.[8][9] Nos estudos de Maxwell, o aspecto da variabilidade com o tempo da indução eletromagnética é expressado como uma equação diferencial, a qual Oliver Heaviside referiu-se como a lei de Faraday, embora seja diferente da versão original da lei de Faraday. A versão de Heaviside é a forma que hoje é reconhecida como parte do grupo de equações conhecido como equações de Maxwell.
A lei de Lenz, formulada por Heinrich Lenz em 1834, descreve o "fluxo através do circuito", e fornece a direção da força eletromotriz e corrente induzidas resultantes da indução eletromagnética.
Lei de Faraday-Neumann-Lenz[editar | editar código-fonte]
Enunciado qualitativo[editar | editar código-fonte]
A versão mais difundida da lei de Faraday afirma:
Esta versão da lei de Faraday é estritamente válida apenas quando o circuito fechado é um laço de fio metálico infinitamente fino,[12] e é inválida em outras circunstâncias a serem discutidas. Uma versão diferente, a equação de Maxwell–Faraday, é válida em todas as circunstâncias.
Enunciado quantitativo[editar | editar código-fonte]
A lei da indução de Faraday faz uso do fluxo magnético ΦB através de uma superfície hipotética Σ, cujo bordo é um laço de fio metálico. Uma vez que o laço pode estar se movendo com o tempo, escreve-se Σ(t) para a superfície. O fluxo magnético é definido pela integral de superfície:
,
- x
- TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde dA é um elemento de área da superfície Σ(t), B é o campo magnético (também chamado de "densidade do fluxo magnético"), e B·dA é um produto escalar dos dois vetores (a quantidade infinitesimal de fluxo magnético). De outro modo, o fluxo magnético através do laço é proporcional ao número de linhas do fluxo magnético que passam por ele.
Quando o fluxo se modifica — devido a uma mudança do B, ou porque o laço é movido ou deformado, ou ambos — a lei da indução de Faraday afirma que o fio adquire uma FEM, ε, definida como o trabalho por unidade de carga que uma força não-eletrostática realiza quando uma carga é transportada em volta do laço.[12][13][14][nota 2] De forma equivalente, é a voltagem que seria medida ao cortar o arame para criar um circuito aberto, ligando um voltímetro às pontas.
A lei de Faraday afirma que a FEM também é dada pela taxa de variação do fluxo magnético:
,
- x
- TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde ε é a força eletromotriz (FEM) e ΦB é o fluxo magnético. A direção da FEM é dada pela lei de Lenz.
Para um fio enrolado firmemente em uma bobina, composta de N voltas idênticas, cada uma com o mesmo ΦB, a lei da indução de Faraday afirma:[15][16]
,
- x
- TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde N é o número de voltas do fio e ΦB é o fluxo magnético através de uma única volta.
Equação de Maxwell-Faraday[editar | editar código-fonte]
A equação de Maxwell-Faraday é uma generalização da lei de Faraday, e afirma que um campo magnético que varia com o tempo é sempre acompanhado por um campo elétriconão-conservativo que varia espacialmente, e vice-versa. A equação de Maxwell–Faraday é:
- x
- TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
(em unidades do SI), onde
é o operador rotacional e, novamente, E(r, t) é o campo elétrico e B(r, t) é o campo magnético. Tais campos podem estar em função da posição re do tempo t.
A equação de Maxwell–Faraday é uma das quatro equações de Maxwell, tendo, portanto, um papel fundamental na teoria do eletromagnetismo clássico. Ela também pode ser escrita na forma integral pelo Teorema de Kelvin-Stokes:[17]
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde Σ é uma superfície limitada pelo seu bordo ∂Σ; E é o campo elétrico; B é o campo magnético; dℓ é um elemento vetorial infinitesimal de ∂Σ; dA é um elemento vetorial infinitesimal de Σ.
Ambos dℓ e dA têm uma ambiguidade de sinal; para obter o sinal correto, usa-se a regra da mão direita. Para uma superfície plana Σ, um elemento de curva positivo dℓ da curva ∂Σ é definido pela regra de mão direita como estando na direção dos dedos da mão direita quando o polegar aponta na direção do vetor normal n exterior à superfície Σ.
Demonstração[editar | editar código-fonte]
As quatro equações de Maxwell (incluindo a equação de Maxwell–Faraday), junto à lei da força de Lorentz, são suficientes para derivar tudo no eletromagnetismo clássico.[12][13]Portanto, é possível "demonstrar" a lei de Faraday partindo dessas equações.[18][19] Em uma abordagem alternativa, não mostrada aqui, porém igualmente válida, a lei de Faraday poderia ser tomada como ponto de partida e usada para "demonstrar" a equação de Maxwell–Faraday e/ou outras leis.
[Expandir]Esboço da demonstração da lei de Faraday partindo das equações de Maxwell e da lei da força de Lorentz.
Contraexemplos[editar | editar código-fonte]
- Gerador unipolar ou disco de Faraday: O disco gira com uma frequência angular ω, movendo o raio condutor circularmente na presença de um campo magnético estacionário B. A força magnética de Lorentz v × B conduz a corrente ao longo do raio condutor, em seguida pelo aro condutor, e, deste, à ligação inferior para um circuito reto até a haste que sustenta o disco. Este dispositivo gera uma FEM e uma corrente, embora o formato do "circuito" seja constante e, portanto, o fluxo magnético não muda com o tempo.
- Um contraexemplo da lei de Faraday quando extrapolada sua interpretação. Um fio (linhas vermelhas) se conecta a duas placas de metal que se encostam, formando um circuito. Todo o sistema está sujeito a um campo magnético uniforme, com normal exterior à página. Se a palavra "circuito" é interpretada como o "percurso primário da passagem da corrente", logo o fluxo magnético através do "circuito" muda dramaticamente quando as placas são rotacionadas; no entanto, a FEM permanece próxima de zero, o que contradiz a lei de Faraday.
Embora a lei de Faraday seja válida para circuitos de fio infinitamente fino, ela pode fornecer um resultado errado caso seja ingenuamente extrapolada para outros contextos.[12]Um exemplo é o gerador unipolar: um disco metálico girando na presença de um campo magnético homogêneo gera uma FEM de corrente contínua. Na lei de Faraday, a FEM é dada pela derivada do fluxo no tempo; logo, uma FEM contínua só é possível caso o fluxo magnético esteja aumentando. Porém, no gerador, o campo magnético é constante e o disco permanece na mesma posição, então, o fluxo magnético não aumenta. Portanto, esse exemplo não pode ser analisado diretamente pela lei de Faraday.
Outro exemplo, como exposto por Richard Feynman,[12] apresenta uma mudança dramática no fluxo através do circuito, no entanto, a FEM permanece arbitrariamente pequena. Veja a figura e legenda acima à direita.
Em ambos os exemplos, as mudanças no percurso da corrente são diferentes do movimento do material que compõe o circuito. Os elétrons em um material tendem a seguir o movimento dos átomos que constituem o material, devido à dispersão na massa e o confinamento da função trabalho nas bordas. Por conseguinte, a FEM relativa ao movimento é gerada quando os átomos do material movem-se através de um campo magnético, arrastando os elétrons com ela, sujeitando-os, assim, à força de Lorentz. No gerador unipolar, os átomos do material movem-se, embora a geometria do circuito como um todo permaneça a mesma. No segundo exemplo, os átomos do material são praticamente estacionários, embora a geometria do circuito como um todo mude dramaticamente. Por outro lado, a lei de Faraday sempre é verdadeira para um fio suficientemente fino, pois a mudança na geometria do circuito é sempre diretamente proporcional ao movimento dos átomos do material.
Embora a lei de Faraday não seja válida em todas as situações, a equação de Maxwell–Faraday e a lei da força de Lorentz são sempre corretas e podem ser sempre usadas diretamente.[12]
A lei de Faraday e a relatividade[editar | editar código-fonte]
Dois fenômenos[editar | editar código-fonte]
Alguns físicos observaram que a lei de Faraday é uma única equação que descreve dois fenômenos diferentes: uma FEM gerada pela força magnética em um circuito móvel, e uma FEM gerada por uma força elétrica devido a uma mudança no campo magnético (dada a equação de Maxwell–Faraday). James Clerk Maxwell chamou atenção para esse fato em On Physical Lines of Force de 1861. Na segunda metade da Parte II do livro, Maxwell fornece uma explicação física separada para cada um dos dois fenômenos.
Em muitos livros modernos, é feita uma referência a esses dois aspectos da indução eletromagnética.[21] Em The Feynman Lectures on Physics, Richard Feynman afirma que a "regra do fluxo" (terminologia por ele usada para referir-se à lei que relaciona o fluxo magnético à FEM) pode ser aplicada tanto no caso em que o fluxo muda porque o campo muda quanto quando o circuito se move, ou ambos. Ele observa que "não se sabe de nenhum outro lugar na física onde um princípio geral tão simples e preciso requer, para seu entendimento real, uma análise em termos de dois fenômenos diferentes".[12]
Visões de Einstein[editar | editar código-fonte]
A reflexão acerca dessa aparente dicotomia foi uma das principais razões que levaram Albert Einstein a desenvolver a relatividade restrita:
Sabe-se que, se tentarmos aplicar a eletrodinâmica de Maxwell, como é usualmente conhecida na atualidade, a corpos móveis, somos levados a assimetrias que não concordam com fenômenos observados. Pensemos na ação mútua entre um imã e um condutor.O fenômeno observado neste caso depende apenas do movimento relativo do condutor e do imã, enquanto que, de acordo com a concepção habitual, uma distinção deve ser feita entre os casos nos quais ou um ou outro dos corpos está em movimento. Caso, por exemplo, o imã mova-se e o condutor esteja em repouso, logo, um campo elétrico com uma certa energia definida é produzido nas proximidades do imã, que excita uma corrente nas partes do campo nas quais o condutor se situa.Porém, se o imã estiver estacionário e o condutor em movimento, nenhum campo elétrico é produzido nas proximidades do imã, contudo, uma força eletromotriz, para qual, em si, não há energia correspondente, é produzida no condutor; ela faz surgir uma corrente elétrica de mesma intensidade e caminho àquela produzida pelas forças elétricas no caso anterior, assumindo, claro, a igualdade do movimento relativo nos dois casos discutidos.Exemplos dessa natureza, tal como as tentativas frustradas de justificar o movimento da Terra relativo ao "meio lumnífero", sugerem que, não apenas na mecânica, mas também na eletrodinâmica, nenhuma propriedade de fatos observados correspondem à ideia de repouso absoluto.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
O operador de Fock no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
sábado, 20 de julho de 2019
Em física computacional e química computacional, o método de Hartree–Fock (HF) é um método aproximativo para determinar a função de onda e a energia de um problema de muitos corpos de um estado estacionário.
O método de Hartree-Fock frequentemente considera que a função de onda de N corpos de um sistema pode ser aproximada por um único determinante de Slater (no caso de muitas partículas serem férmions) ou um permanent (no caso dos bósons) para N orbitais de spins. Utilizando o método variacional, pode-se derivar um conjunto de "N" equações acopladas para "N" orbitais de spins. Uma solução destas equações produz a função de onda de Hartree-Fock e dá a energia do sistema.
Na literatura o método de Hartree-Fock é chamado de método de campo autoconsistente. Ao deduzir o que hoje é chamada de equação de Hartree, como uma solução aproximada da equação de Schrödinger, Douglas Hartree exigiu que o campo final calculado a partir da distribuição de carga fosse autoconsistente com o campo considerado inicialmente. Assim, sua autoconsistência é uma exigência da solução. As soluções para as equações não lineares de Hartree-Fock também se comportam como se cada partícula fosse submetida ao campo médio criado por todas as outras partículas (operador de Hartree-Fock). As equações são universalmente resolvidas por meio de um método iterativo, embora o algoritmo de ponto fixo nem sempre convirja.[1] Este tipo de solução não é a única possível e também não é uma característica essencial do método Hartree-Fock.
O operador de Fock[editar | editar código-fonte]
Como o termo de repulsão elétron elétron do Hamiltoniano molecular envolve as coordenadas de dois elétrons diferentes, é necessário reformulá-lo de forma aproximada. Para esta aproximação, todos os termos do Hamiltoniano exato, exceto o termo de repulsão nuclear, são reescritos como a soma dos operadores de um elétron para átomos ou moléculas em uma casca fechada (com dois elétrons em cada orbital).[5] O "(1)" de cada símbolo de operador, indica que o operador é de um único elétron na natureza.
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
É o operador de Fock para um elétron gerado pelos orbitais
,
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
É o núcleo do Hamiltoniano de um elétron,
Onde o operador de Coulomb define a energia de repulsão elétron elétron devido a cada um dos dois elétrons j no enésimo orbital.[5]
É o operador de troca, que define a energia de troca dos elétrons devido a antisimetrização da função de onda de todos os n elétrons.[5] Onde o perador "Troca de energia", K, é obtido através do determinante de Slater. Então para encontrar as funções de onda de um elétron pelo método de Hartree-Fock, é equivalente a resolver as equações das autofunções:
- x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Onde
são um conjunto de funções de onda um elétron, chamadas de orbitais moleculares de Hartree-Fock.
Combinação linear dos orbitais atômicos[editar | editar código-fonte]
Tipicamente nos cálculos mais modernos do método de Hartree-Fock, as funções de onda para um elétron são uma combinação linear dos orbitais atômicos. Esses orbitais atômicos são chamados orbitais do tipo Slater. Além disso, é muito comum que os "orbitais atômicos" em uso sejam realmente compostos de uma combinação linear de um ou mais orbitais gaussianos, em vez de orbitais do tipo Slater, no interesse de economizar grandes quantidades de tempo de computação.
Diversos conjuntos de bases (química) são usados na prática, a maioria são compostas de funções Gaussianas. Em algumas aplicações, métodos de ortogonalização como o de Gram-Schmidt são usados para produzir um conjunto de bases ortogonais. Isso pode, em princípio, economizar tempo computacional quando o computador está resolvendo as equações de Roothaan Equações de Roothaan-Hall convertendo a matriz de superposição para uma matriz de identidade. No entanto, na maioria dos programas modernos para cálculos Hartree-Fock, este procedimento não é seguido devido ao alto custo numérico da ortogonalização. O advento de algorítmos mais eficientes, muitas vezes escassos, para resolver o problema do autovalor generalizado, como as equações Roothaan-Hall são um exemplo.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.
COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.
OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DULA ONDAS-PARTÍCILAS.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
/
GENERALIDADES ESPECÍFICAS / PARTÍCULAS..
ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.
PRINCÍPIO GRACELI DA INTERPOSIÇÃO
quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta relação].
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.
FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].
É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
- X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG DXΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli.xsistema de transições de estados, e estados de Graceli,xT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.
O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.
Com isto pode-se dividir a física em quatro grandes fases:
a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.
teoria da relatividade categorial Graceli
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
matriz categorial Graceli.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico, estados de fenômenos, estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado, vejamos alguns:
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Assinar: Postagens (Atom)
Assinar: Postagens (Atom)
Publicada por cientista, teólogo e filósofo Ancelmo Luiz Graceli
Assinar: Postagens (Atom)
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário