TEORIAS E FILOSOFIAS DE GRACELI 197

 


terça-feira, 23 de julho de 2019














Pode ser, no entanto, muito mais importante a demostração de que a energia e massa, antes consideradas propriedades mensuráveis diferenciadas, relacionavam-se através da que é, sem dúvida, a equação mais famosa de toda a física moderna:
,
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde E é a energiam é a massa e c é a velocidade da luz no vácuo. Se o corpo está a se mover à velocidade v relativa ao observador, a energia total do corpo é:
, onde 
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
O γ surge em relatividade na derivação das transformações de Lorentz.
Quando v é muito menor que c pode-se usar uma aproximação de γ (obtida pelo desenvolvimento em série de Taylor), 
x


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
igual à energia em repousomc², mais a energia cinética newtoniana, ½mv². Este é um exemplo de como as duas teorias coincidem quando as velocidades são pequenas.
Além do mais, à velocidade da luz, a energia será infinita, o que impede que as partículas que têm massa em repouso possam alcançar a velocidade da luz.
A implicação mais radical da teoria é que põe um limite superior às leis(ver Lei da natureza) da Mecânica clássica e gravidade propostas por Isaac Newton quando as velocidades se aproximam da velocidade da luz no vácuo. Nada que possa transportar massa ou informação pode mover-se tão ou mais rápido que a luz. Quando um objeto se aproxima da velocidade da luz (em qualquer sistema) a quantidade de energia diferencial requerida para a aumentar a sua velocidade aumenta de forma rápida e assimptótica até ao infinito, tornando impossível alcançar a velocidade da luz. Só partículas sem massa, como os fotões, podem alcançar a dita velocidade (além disso, devem mover-se em qualquer sistema de referência a essa velocidade) que é aproximadamente 300 000 quilómetros por segundo (3·108 ms−1).
O nome táquion foi usado para nomear partículas hipotéticas que se deslocariam sempre a uma velocidade superior à da luz. Atualmente ainda não há evidência experimental da sua existência.
A relatividade especial também afirma que o conceito de simultaneidade é relativo ao observador: se a matéria pode viajar ao longo de uma linha (trajetória) no espaço-tempocuja velocidade em todo momento é menor que a da luz, a teoria chama a esta linha intervalo temporal. De forma semelhante, um intervalo espacial significa uma linha no espaço-tempo ao longo da qual nem a luz nem outro sinal mais lento poderiam viajar. Acontecimentos ao longo de um intervalo espacial não podem influenciar-se um ao outro transmitindo luz ou matéria, e podem aparecer como simultâneos a um observador num sistema de referência adequado. Para observadores em diferentes sistemas de referência, o acontecimento A pode parecer anterior a B ou vice-versa. Isto não sucede quando consideramos acontecimentos separados por intervalos temporais.
A Relatividade restrita é quase universalmente aceita pela comunidade física na atualidade, ao contrário da Relatividade Geral que, apesar de ter sido confirmada, foi-o com experiências que não invalidam algumas teorias alternativas da gravitação. Efetivamente, há ainda quem se opõe à TRR em vários campos, tendo sido propostas várias alternativas, como as chamadas Teorias do Éter.












RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.



TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.


TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI

COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.

O TEMPO NÃO SE MEDE DE UM MOMENTO A OUTRO, MAS DE FLUXOS ALEATÓRIOS ESPECÍFICOS DE GRACELI.

OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DUal ONDAS-PARTÍCILAS.


RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.

/

GENERALIDADES ESPECÍFICAS / PARTÍCULAS..









ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.






OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.



PRINCÍPIO GRACELI  DA INTERPOSIÇÃO
quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta  relação].

MAS, O QUE CAUSA ESTA RELAÇÃO?

É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.

SENDO QUE NO VERÃO E NA FASE DE AFÉLIO  [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA  SE TORNA  MAIOR.


O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.

OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.

COMO FENÔMENSO DE:

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.

COMO SE ENCONTRA ABAIXO.:














PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES


QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.


OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.

OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].

OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE,  E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.

COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.

VEJAMOS ABAIXO.



 um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.

pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.


ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.

LOGO, SE TEM UMA TRANSCENDENTALIDADE  INDETERMINADA .


COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.


OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.


COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI. 


E COM VARIÁVEIS CONFORME O SDCTI-GRACELI - 








DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.

CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.

COMO TAMBÉM TRANSIÇÕES DE :

E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  



OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.



TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].

CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.

OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.




SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =


X SDCTI - GRACELI







CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.


OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.

E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:

X

X SDCTI - GRACELI 





SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E  INDETERMINISTA GRACELI.

O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.

FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].

É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.





PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.



DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.

OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.


ESTADO QUÂNTICO EXCITADO E [OU] NORMAL


=


X SDCTI - GRACELI 



SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.




TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.



TRANSFORMAÇÕES ⇔ INTERAÇÕES =  Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,   Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.
  • X

  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.



RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.

A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.


RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.

A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI




A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .


RELATIVIDADE GRACELI DE ALTAS ENERGIAS.

NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.





OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.



EM = ENERGIA E MASSA.

SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI

EM X SDC G.=

EM =
X


V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

X =

ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D








 VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.




RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.

[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] =  Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

X =

ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.


um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.

o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.


ΤDCG
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.

O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.


Com isto pode-se dividir a física em quatro grandes fases:

a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.




teoria da relatividade categorial Graceli

ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados  de Graceli, 
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Sobre padrões de entropia.

Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


Princípio tempo instabilidade de Graceli.

Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões


postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico,  estados de fenômenos, estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado,  vejamos alguns:

Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].


quinta-feira, 25 de julho de 2019


proteção magnética nuclear é a prática de reduzir o campo electromagnético num espaço nuclear, bloqueando o campo electromagnético com barreiras feitas de condutoresde materiais magnéticos. A proteção magnética que bloqueia a radiação electromagnética de radiofrequência também é conhecida como proteção RF .[1]

    Histórico[editar | editar código-fonte]

    Em 1941, Willis E. Lamb apresentou na Physical Review 60 a expressão inicial sobre a constante de proteção magnética. Neste trabalho o desenvolvimento da expressão da constante de proteção magnética (tensor proteção magnética) foi elegantemente realizada através dos fundamentos do eletromagnetismo clássico.[1]

    Propriedades[editar | editar código-fonte]

    Lamb obteve a referida expressão
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde H” é o campo secundário produzido pela orbital molecular quando irradiado por um pulso de rf, e = carga e-. esta expressão é também demonstrada de uma forma mais didática
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde Na = ρ , onde ρ é a densidade de carga do sistema e J é densidade de corrente, como a carga eletrônica está circulando ao redor do núcleo, tem uma velocidade (ω x r) em cada ponto de coordenadas r, referidas ao núcleo como origem. Logo a densidade de carga pode ser expressa,
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    como 
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde 
     (Z)
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    pela lei de Biot-Savart ,temos
     (X)
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    a junção de (Z) com (X) , temos
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    x




    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Em 1950, Norman F. Ramsey apresentou um trabalho na Physical Review 78 , o qual desenvolveu duas expressões para a proteção magnética nuclear. Como o campo magnéticodo núcleo não é igual ao campo externo aplicado devido ao campo secundário que surge do movimento dos elétrons na orbital molecular. A expressão para a contribuição do elétron para o campo magnético foi mostrada consistindo em duas partes.[1] A primeira é um termo simples que é semelhante à correção diamagnética desenvolvida por Lamb para átomos. O segundo é complicado surgindo do paramagnetismo de segunda-ordem e é análogo ao termo dependente nos elementos de matriz de freqüência na teoria do diamagnetismo molecular. Debaixo de circunstancias o termo paramagnético de segunda-ordem pode ficar muito grande.
    Desde que ambos termos são alterados quando o mesmo núcleo está em moléculas diferentes, eles explicam o efeito químico que foi informado por vários observadores em medidas de momentos nucleares pelo menos parcialmente e talvez completamente.


















    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    sexta-feira, 19 de julho de 2019



    Em teoria da probabilidade e em estatística, uma distribuição de probabilidade descreve o comportamento aleatório de um fenômeno dependente do acaso. O estudo dos fenômenos aleatórios começou com o estudo dos jogos de azar – jogos de dados, sorteios de bolas de urna e cara ou coroa eram motivações para compreender e prever os experimentos aleatórios. Essas abordagens iniciais são fenômenos discretos, o que significa que o número de resultados possíveis é finito ou contável. Entretanto, certas questões revelam distribuições de probabilidade com suporte infinito não contável. Por exemplo, quando o lançamento de uma moeda tende ao infinito, o número de coroas aproxima-se de uma distribuição normal.
    Flutuações e variabilidade estão presentes em quase todo valor que pode ser medido durante a observação de um fenômeno, independente de sua natureza, além disso quase todas as medidas possuem uma parte de erro intrínseco. A distribuição de probabilidade pode modelar incertezas e descrever fenômenos físicos, biológicos, econômicos, entre outros. O domínio da estatística permite o encontro das distribuições de probabilidade adaptadas aos fenômenos aleatórios.
    Há muitas distribuições de probabilidade diferentes. Entre as distribuições de probabilidade, a distribuição normal tem uma importância particular. De acordo com o teorema central do limite, a distribuição normal aborda o comportamento assintótico de várias distribuições de probabilidade.
    O conceito de distribuição de probabilidade é formalizado matematicamente pela teoria da medida – uma distribuição de probabilidade é uma medida muitas vezes vista como uma distribuição que descreve o comportamento de uma variável aleatória discreta ou contínua. Uma medida é uma distribuição de probabilidade se sua massa total for 1. O estudo de uma variável aleatória de acordo com uma distribuição de probabilidade discreta revela o cálculo de somas e de séries, enquanto que o estudo de uma variável aleatória de acordo com uma distribuição de probabilidade absolutamente contínua revela o cálculo de integrais. As funções particulares permitem caracterizar as distribuições de probabilidade como a função de distribuição e a função característica.

      Definição informal[editar | editar código-fonte]

      Teoricamente uma descrição de probabilidade descreve a característica aleatória de uma experiência aleatória.[1][2] O conceito de experiência aleatória surgiu para descrever um processo real de natureza experimental, em que o acaso intervém com resultados possíveis bem identificados.[3] Por exemplo, em um lançamento de um dado não viciado (um evento aleatório) os resultados podem ser um número entre 1 e 6 com igual probabilidade (de acordo com a distribuição de probabilidade, há a mesma chance de sairem os seis resultados com probabilidade igual a um sexto).
      Historicamente distribuições de probabilidade foram estudadas em jogos de azar, jogos de dados, jogos de cartas, entre outros. Se os possíveis resultados dos fenômenos forem números contáveis, a distribuição de probabilidade é chamada discreta. Dar a distribuição de probabilidade significa dar a lista de valores possíveis com suas probabilidades associadas.[1] Ela é dada por meio de uma fórmula, uma tabela de valores, uma árvore de probabilidade ou funções que serão detalhadas nas seções seguintes.
      Em um contexto mais amplo, se os números dos resultados possíveis de um fenômeno aleatório forem finitos (contáveis ou incontáveis) em vez de infinitos, a distribuição de probabilidade descreve a distribuição de probabilidade dos resultados possíveis, mas caracterizados como funções (funções densidadefunções distribuição, entre outros) ou como medidas.[1]

      Histórico[editar | editar código-fonte]

      Ilustração de uma pirâmide formada por feixes convergentes que superam uma curva de Gauss. Ela representa a placa de Galton, concebida em 1889, usada para visualizar a curva de Gauss como distribuição limite.
      O uso do acaso existe desde os tempos antigos, especialmente em jogos de azar, em apostas de riscos de transportes marítimos ou em rendas vitalícias.[3] Entretanto, uma das primeiras referências conhecidas para os cálculos de probabilidade é um cálculo elementar sobre a Divina Comédia que aparece apenas no século XV durante o Renascimento.[4] Os primeiros tratados formam o início da teoria da probabilidade, principalmente com base em probabilidades combinatórias. Os problemas surgem à respeito da duração de um jogo de cartas:
      Reconhece-se a probabilidade (a aposta) de uma variável (a duração de um jogo) ser menor que um valor (um certo número determinado), que representa a função de distribuição da distribuição de probabilidade de um jogo.
      Essa é a tese de Nicolau Bernoulli, publicada em 1711, em que aparece pela primeira vez a distribuição uniforme.[6] Então, outras distribuições apareceram como a distribuição binomial e a distribuição normal, embora suas abordagens não sejam completamente rigorosas[6]— por exemplo, a distribuição normal foi desenvolvida por Abraham de Moivre com uma curva de Gauss por uma aproximação numérica.[7] No século XVIII, outras ideias de distribuições de probabilidade emergiram[6] com a expectativa de uma variável aleatória discreta com Jean le Rond D'Alembert ou de probabilidades condicionais com Thomas Bayes. Algumas distribuições de probabilidade contínuas estão contidas em uma memória de Joseph—Louis Lagrange, de 1770.[6]
      O uso rigoroso das distribuições de probabilidade começou a partir do século XIX nas ciências aplicadas como na biometria com Karl Pearson[8] ou na física estatística com Ludwing Boltzmann.[9]
      A definição formal das medidas de probabilidade surgiu em 1896 com uma publicação de Émile Borel,[10] continuando com outros matemáticos como Henri—Léon LebesgueMaurice René FréchetPaul Lévy e principalmente Andrei Kolmogorov que formulou os axiomas de probabilidade em 1933.

      Definição matemática[editar | editar código-fonte]

      Em teoria da probabilidade, uma distribuição de probabilidade é uma medida com massa total igual a 1. Essa medida satisfaz os três axiomas de probabilidade.
      Definição[2] — Para um espaço mensurável  é uma distribuição de probabilidade, medida de probabilidade ou simplesmente probabilidade se:
      1.  é uma aplicação de  em [0,1];
      2. ;
      3.  é –aditiva. Isto é, para qualquer família finita ou contável de elementos disjuntos  de   Uma consequência imediata é: .
      4. x



      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
       é chamado de espaço de probabilidade.[11] Usualmente a palavra distribuição é usada quando tratamos de uma distribuição de probabilidade de uma variável aleatória  definida em um espaço de probabilidade .
      Definição[12] — Seja uma variável aleatória real no espaço de probabilidade. Isto é, uma função mensurável . A distribuição de probabilidade da variável aleatória  é a medida de probabilidade  definida sobre o espaço mensurável  por para qualquer álgebra de Borel real . Em outras palavras,  é a medida de imagem de  para .
      Então, para definir a distribuição de uma variável aleatória, transpõe-se a distribuição de probabilidade  de  em uma medida  de .
      A representação de uma distribuição por uma variável aleatória não é única.[13] Em outras palavras, duas variáveis aleatórias diferentes ou duas variáveis aleatórias definidas em espaços diferentes podem ter a mesma distribuição. Duas variáveis aleatórias reais  e  têm a mesma distribuição (em termos de igualdade de medidas). Isto é,  para todo . O seguinte teorema permite uma caracterização adicional.
      Teorema de transferência[14] ou de transporte[15] — Seja uma variável aleatória real . Logo,
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      para toda função , de tal modo que pelo menos uma das duas integrais existe.[16] A última integral, do ponto de vista da teoria da medida, é uma integral da função em relação à medida . Essa integral tem forma de soma, no caso das distribuições discretas. Então, duas variáveis aleatórias reais  e  têm a mesma distribuição se  para qualquer função , tal que existe pelo menos um dos dois termos da igualdade.

      Distribuição multidimensional[editar | editar código-fonte]

      Distribuição normal bidimensional ou produto de duas distribuições normais unidimensionais.
      Uma distribuição de probabilidade é chamada de multidimensional ou -dimensional[17] quando descreve vários valores (aleatórios) de um fenômeno aleatório, por exemplo, no lançamento de dois dados a distribuição de probabilidade dos dois resultados é uma distribuição bidimensional. Então, a característica multidimensional aparece por meio da transferência por uma variável aleatória de um espaço de probabilidade  para um espaço numérico , de dimensão , por exemplo, no lançamento de dois dados a dimensão é  e o espaço  é . A distribuição multidimensional também é chamada de distribuição conjunta.[18]
      Um exemplo importante da distribuição multidimensional é a probabilidade produto , em que  e  são duas distribuições unidimensionais. Essa distribuição de probabilidade é uma distribuição de um par de variáveis aleatórias independentes.[19]Esse é o caso do exemplo do lançamento de dois dados.
      Definição — Seja uma variável aleatória  no espaço de probabilidade , com valores em  equipada com produtos de algebras de Borel . A distribuição da variável aleatóriaé a medida de probabilidade  definida para todo 
      A variável aleatória  é identificada[20] a um vetor aleatório de dimensões . O teorema de Cramer-Wold[21] estabelece que a distribuição (-dimensional) do vetor aleatório é completamente determinado pelas distribuições (unidimensionais) de todas as combinações lineares dos componentes:  para todo .
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Distribuição absolutamente contínua[editar | editar código-fonte]

      Ilustração de três esquemas em branco e preto, com uma nuvem de pontos em forma de triângulo à esquerda e duas curvas à direita. Elas representam duas coordenadas (dimensão 1 e dimensão 2) de dois pontos que se aproximam cada uma com uma distribuição normal. Isto é, uma simulação de distribuição bidimensional em que as duas distribuições marginais são normais.
      Uma distribuição bidimensional ou -dimensional é chamada de absolutamente contínua[22] em  quando a distribuição é absolutamente contínua em relação à medida de Lebesgue em . Isto é, se a distribuição da variável aleatória correspondente é descrita como
       ,
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      para todo 

      Distribuição marginal[editar | editar código-fonte]

      Ver artigo principal: Distribuição marginal
      Uma distribuição marginal de um vetor aleatório é a distribuição dos seus componentes. Para obter-la, projeta-se a distribuição em um espaço unidimensional de uma coordenada desejada. A distribuição de probabilidade da -ésima coordenada de um vetor aleatório é chamada de -ésima distribuição marginal .[23] A distribuição marginal  de  é obtida pela fórmula
       ,
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      para todo .
      As distribuições marginais de uma distribuição absolutamente contínua são expressas com suas densidades marginais.[23]

      Distribuição condicional[editar | editar código-fonte]

      Ver artigo principal: Probabilidade condicionada
      Ilustração de uma árvore binária de dois andares orientada da esquerda para a direita. Ela representa a aplicação de uma distribuição condicional, em que + significa que o indivíduo é positivo para o teste de drogas e U significa que o indivíduo é usuário de drogas  é a probabilidade de o teste ser positivo para um indivíduo usuário de drogas.
      Uma distribuição de probabilidade condicional permite descrever o comportamento de um fenômeno aleatório quando a informação sobre o processo é conhecida. Em outras palavras, a probabilidade condicional permite avaliar o grau de dependência estocástica entre dois eventos,[24] por exemplo, no lançamento de dois dados a distribuição condicional pode dar a soma dos resultados sabendo que o resultado do lançamento de um dos dois dados foi pelo menos quatro.

      Definição para eventos[editar | editar código-fonte]

      A probabilidade condicional é definida[25] em eventos pela probabilidade : a probabilidade de um evento A qualquer condicionado a um evento B. Para quaisquer  e  da σ-álgebra subjacente tal que 
      .
      Em probabilidade e em estatística, a distribuição de probabilidade[26]  comumente usada em distribuição da probabilidade total ou no teorema de Bayes.

      Definição para variáveis aleatórias[editar | editar código-fonte]

      A probabilidade condicional também é definida para as variáveis aleatórias. Seja uma variável X condicional a uma variável Y. Quando , a distribuição de  dado  é definida por[26]
      .
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      A definição acima não é válida se a distribuição de Y for absolutamente contínua dado que  para todo . A definição seguinte é válida para quaisquer das duas variáveis aleatórias.
      Definição[27]  Seja  um par de variáveis aleatórias reais. Há uma distribuição de probabilidade , chamada de distribuição condicional de  dado  ou dado definida pela e para qualquer função limitada boreliana  quase certamente.
      A distribuição também é denotada como  ou . A igualdade anterior é uma igualdade entre variáveis aleatórias.[28]

      Definição para σ-álgebra[editar | editar código-fonte]

      De maneira mais geral, a distribuição de probabilidade é definida a partir da esperança condicional de uma variável aleatória  dada uma σ-álgebra . Essa esperança condicional é a única variável aleatória -mensurável denotada como , satisfazendo  para todo , variável -mensurável. Então, a distribuição condicional é definida por[29] , em que  é a função indicadora.

      Definição para distribuições absolutamente contínuas[editar | editar código-fonte]

      No caso das distribuições absolutamente contínuas, existe uma função densidade condicional de uma distribuição em relação a outra e vice-versa. Se  é a densidade da distribuição bidimensional, as duas densidades condicionais são dadas por[30]
       e .
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
       e  são as duas distribuições marginais de  e , respectivamente. Em substituição das integrais pelas somas, obtém-se fórmulas semelhantes quando as distribuições marginais são discretas ou quando a distribuição marginal de  é discreta e de  é absolutamente contínua ou vice-versa.[31]

      Distribuição com valores em um espaço de Banach[editar | editar código-fonte]

      Porque  é um espaço de Banach, as distribuições dos valores em um espaço de Banach são generalizações das distribuições dos valores reais. A definição é semelhante.[32]
      Definição — Sejauma variável aleatória em um espaço de probabilidade com valores em um espaço de Banach  com σ-álgebra  gerada pelos conjuntos abertos de . A distribuição de probabilidade da variável aleatória e a medida de probabilidade definida pelo espaço mensurável por para todo .
      Para obter boas propriedades, é comum considerar as medidas de probabilidade tight. Isto é, Intuitivamente, são as medidas concentradas em seu espaço compacto e com a suposição que o espaço de Banach é separável.[33]
      Um possível exemplo do espaço de Banach é o espaço das funções contínuas . Um processo estocástico de uma família de variáveis aleatórias  indexadas por conjunto de índices . Uma definição possível da distribuição de probabilidade de tal processo é chamada de distribuição finita-dimensional.[34] Isto é, a distribuição multidimensional dos vetores  quando . Então, a distribuição pode ser estendida pelo teorema da extensão de Carathéodory para todo o processo. Um exemplo é movimento browniano (trajetórias contínuas), cuja distribuição de probabilidade é a medida de Weiner[35] geralmente denotada por  para todo subconjunto  de .

      Espaço de distribuições de probabilidade[editar | editar código-fonte]

      Uma distribuição de probabilidade é uma medida de massa total unitária. O conjunto de distribuições de probabilidade é um subespaço do espaço de medidas finitas. Esse espaço é muitas vezes denominado[36]  ou  pelas distribuições de probabilidade reais. No restante da seção, as propriedades desse espaço são detalhadas para as distribuições de probabilidade no conjunto dos números reais. Embora também possam ser detalhadas para distribuições em espaços de Banach.
      É possível fornecer esse espaço com uma topologia chamada topologia fraca.[36] Essa topologia define uma convergência fraca das distribuições de probabilidade: uma sequência de distribuições de probabilidade  converge fracamente para uma distribuição de probabilidade  se
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      A convergência é denominada .[36] Essa convergência é refletida pelo teorema de transferências de variáveis aleatórias  das respectivas distribuições . Então, a convergência de variáveis aleatórias é chamada convergência em distribuição (ou fraca) é denotada  ou . O termo convergência fraca das variáveis aleatórias é mais frequentemente utilizado.
      O espaço de distribuições de probabilidade com topologia fraca é[37] um espaço métricocompleto e separável (no caso de um espaço de Banach também separável), tornando-se um espaço polonês.

      Propriedades[editar | editar código-fonte]

      Parâmetros e famílias[editar | editar código-fonte]

      Certas distribuições são agrupadas por família em relação a certas propriedades da sua densidade ou da sua função massa de acordo com o número de parâmetros que as definem, chamados de família paramétrica de distribuição de probabilidade.[38]
      Ilustração de diferentes curvas de Gauss assimétricas. Ela representa diferentes parâmetros de forma (assimetria) para densidade de probabilidade da distribuição normal assimétrica.

      Parâmetros[editar | editar código-fonte]

      Os chamados parâmetros de posição[38] influenciam a tendência central da distribuição de probabilidade. Isto é, o valor ou os valores em torno dos quais a distribuição leva seus maiores valores como a esperança, a mediana, a moda, os quantils e os decils.
      Différentes courbes de Gauss
      Ilustração de diferentes curvas de Gauss. Ela representa diferentes parâmetros de posição () e parâmetros de escala () para densidade de probabilidade da distribuição normal.
      Os chamados parâmetros de escalonamento[38] influenciam a dispersão ou o achatamento da distribuição de probabilidade como a variância (momento de segunda ordem), o desvio padrão e o intervalo interquartil.
      Os chamados parâmetros de forma[38] são outros parâmetros relacionados a distribuição de probabilidade. A cauda de uma distribuição de probabilidade real faz parte da sua forma. As caudas da esquerda e da direita são[39] dos tipos  e , respectivamente. Uma distribuição de probabilidade é chamada de cauda pesada se a medida de probabilidade da cauda  tende mais lentamente a 0, quando  vai para infinito, do que a distribuição normal.[40] Especialmente para qualquer distribuição absolutamente contínua e centrada, adefinição pode ser representada em termos de densidade[41]:
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      é uma distribuição com caudas direita e esquerda pesadas.
      assimetria (momento de terceira ordem[42]) é um exemplo de parâmetro de forma, que permite tornar a cauda da direita mais ou menos pesada.[43] A curtose (momento de quarta ordem[42]) é usada para apoiar ou opor-se aos valores próximos da média daqueles que estão mais distantes. Uma distribuição de probabilidade é chamada de mesocúrtica, leptocúrtica ou platicúrtica se a curtose é 0, positiva ou negativa.

      Famílias[editar | editar código-fonte]

      Uma distribuição é chamada de família exponencial a um parâmetro[44] se sua densidade de probabilidade ou sua função massa depende de apenas uma parâmetro  da seguinte forma:
      Uma distribuição é chamada de família potência a dois parâmetros[44]  e  se a densidade:
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Distribuição direcional[editar | editar código-fonte]

      Quando uma distribuição de probabilidade multidimensional representa a direção aleatória de um fenômeno, ela é chamada de direcional. É uma distribuição de um vetor aleatório unitário de dimensão , em que , ou, de maneira equivalente, é uma distribuição de probabilidade na esfera de dimensão . Uma distribuição direcional de dimensão d pode ser representada por um vetor (-1-dimensional) em coordenadas polares como as distribuições de von Mises e de Bingham.[45]

      Momentos[editar | editar código-fonte]

      Ver artigo principal: Momento (estatística)
      Se existir, o -ésimo momento de uma distribuição de probabilidade  é definido como . Essa fórmula é descrita[46] simplesmente como  caso a distribuição seja definida a partir de uma variável aleatória .
      O primeiro momento ou momento de ordem 1 também é chamado de esperança da distribuição. Quando o momento é igual a 0, a distribuição é chamada centrada. O segundo momento ou momento de ordem 2 também é chamado de variância da distribuição. Quando o momento é igual a 1, é dito que a distribuição é reduzida.
      De uma maneira geral, a coleção de todos os momentos  de uma distribuição de probabilidade não é suficiente para caracterizar essa distribuição.[47] Certas distribuições são definidas por um número finito do seu momento: a distribuição de Poisson é completamente definida por sua esperança,[48] a distribuição normal é completamente definida por seus dois primeiros momentos.[49] Certas distribuições não possuem momento como a distribuição de Cauchy.

      Entropia[editar | editar código-fonte]

      As distribuições de probabilidade permitem representar fenômenos aleatórios. A entropia de Shannon de uma distribuição de probabilidade foi introduzida em termodinâmica para quantificar a desordem molecular de um sistema.[50] O objetivo é medir a falta da informação em lei de probabilidade.[51] A entropia foi definida pela primeira vez para as distribuições discretas, tendo sido estendida para as distribuições absolutamente contínuas. Para uma distribuição discreta  e uma distribuição  de densidade , a entropia  é definida respectivamente como[50][52]
       e .
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      • A distribuição normal é a entropia máxima para todas as distribuições possíveis que possuem a mesma média e o mesmo desvio padrão.[9]
      • A distribuição geométrica é a entropia máxima para todas as distribuições discretas que possuem a mesma média.[9]
      • A distribuição uniforme contínua é a entropia máxima para as distribuições com suporte limitado.
      • A distribuição exponencial é a entropia máxima para todas as distribuições em  que possuem a mesma média.[9] 
      • As distribuições lei de potência como a lei de Zipf são a entropia máxima entre aqueles que tem a mesma média de logaritmo.
      O estado de entropia máxima é o estado mais desordenado, mais estável e mais provável de um sistema.[51] Essas leis são os menos evitável de todas as leis compatíveis com as observações ou as condições. Portanto, a única forma objetiva de qualifica-las como distribuições de probabilidade a priori. Essa propriedade tem um papel importante na inferência bayeseana.

      Classificação das distribuições de probabilidade na reta real[editar | editar código-fonte]

      Representação de três funções de distribuição de distribuições de probabilidade:
      • em vermelho: distribuição absolutamente contínua (normal padrão);
      • em azul: distribuição discreta (distribuição de Poisson de parâmetro 2);
      • em preto: distribuição mista (combinação linear de uma medida de Dirac -2, uma medida de Dirac -1 e uma distribuição de Cauchy de parâmetros -2 e 1.
      Distribuições de probabilidade em aplicações mais comuns são distribuições discretas e distribuições absolutamente contínuas. Entretanto, existem distribuições de probabilidade que não são nem discretas nem absolutamente contínuas.[48]

      Distribuições discretas[editar | editar código-fonte]

      Definição[editar | editar código-fonte]

      Ilustração de linha abscissa preta com três pontos discretos. O suporte da distribuição discreta é composto por {1}, {3} e {7} com probabilidades associadas 0,2, 0,5 e 0,3, respectivamente.
      Uma distribuição de probabilidade  é concentrada[48] ou é realizada em um conjunto  quando . Uma distribuição de probabilidade  é chamada de discreta[11][12] se um conjunto  é um conjunto finito ou contável.
      O elemento  é chamado de átomo de uma distribuição de probabilidade  quando  e . O conjunto de átomos de uma distribuição discreta é finito ou contável. De modo geral, essa propriedade é válida para toda medida -finita. Para uma distribuição de probabilidade real, o conjunto de átomos é exatamente o conjunto de pontos de descontinuidade de sua função de distribuição.[53] Neste caso, a finitude do conjunto de átomos é dada a partir do fato que a função de distribuição é limitada.[54]
      Um critério suficiente para uma distribuição de probabilidade ser discreta é que  seja finito ou contável.
      Se  é discreto, então ele se concentra em particular no conjunto (finito ou contável) dos seus átomos . Para definir é preciso definir o conjunto dos pares:[48] , em que  é a função de massa de . Então, obtém-se
      ,
      em que  é a medida de Dirac[13][22] no ponto .
      No caso em que a distribuição de probabilidade é definida a partir de uma variável aleatória, os conceitos anteriores são usados para a variável aleatória: uma variável aleatória , concentrada em conjunto , é discreta, se a distribuição  concentrada em , é discreta. Os mesmo átomos de  são os átomos de .[55]
      Para uma variável aleatória discreta , o teorema de transferência é expresso na forma de somas ou de séries[55]
      , para toda função ,
      , para todo .
      x




      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS, E OUTROS.  

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Geralmente a função de distribuição de uma distribuição discreta é constante seccionalmente.[48] Uma distribuição discreta pode ser representada por um gráfico de barras.[11]

      Exemplos[editar | editar código-fonte]

      Segue uma lista de distribuições de probabilidade discretas com suportes finitos ou contáveis.
      Medida de Dirac
      A medida de Dirac é o exemplo mais simples das distribuições discretas no sentido que o suporte possui apenas um valor.[56] Se uma variável aleatória é a medida de Dirac , então  é igual a  com probabilidade igual a 1. Essa lei modela um fenômeno determinista (não aleatório) pois o resultado da experiência é quase certamente igual ao valor conhecido .
      Função de distribuição de probabilidadeEsperança
      (1º momento)
      Variância
      (2º momento)
      Notação
      [57]
      Distribuição uniforme discreta
      A distribuição uniforme discreta modela um fenômeno aleatório cujos resultados são igualmente prováveis.[58] É o caso do lançamento de um dado. Se o suporte  da distribuição é um conjunto de  elementos , a distribuição é definida como 
      Função de distribuição de probabilidadeEsperança
      (1º momento)
      Variância
      (2º momento)
      Notação
      [58]

      Comentários

      Postagens mais visitadas deste blog

      TEORIAS E FILOSOFIAS DE GRACELI 203

      TEORIAS E FILOSOFIAS DE GRACELI 210

      TEORIAS E FILOSOFIAS DE GRACELI 206